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Abstract: In the paper we introduce a new model of fuzzy relational databases in which uncertain data are 

represented as just linguistic terms with the hedge algebra-based semantics. That is these terms can be 

considered as elements of hedge algebras and their quantitative semantics are defined by semantically 

quantifying mappings of hedges algebras that are defined by the fuzziness measure of terms. These mappings 

assign each linguistic term of an attribute a real value in the real domain associated with the attribute, called 

the semantic representative or semantic value of this term. Based on fuzziness measure of terms, a system of 

fuzziness intervals of an attribute domain can be determined, from which we can construct k-neighbourhoods of 

linguistic terms and k-partition of the attribute domain, where k is the length of strings which represent 

linguistic terms of hedge algebras. This k-partition allows define k-matching relations on the attribute domain 

under consideration. We show that under the equivalence classes of this k-partition, which are intervals, and the 

semantic representatives of linguistic data in the database, we can manipulate the data in a unified way, 

because the queries related to linguistic data can be converted into the classical ones. 

Keywords: fuzzy relational databases, hedge algebra, linguistic term, fuzziness measure. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 13-06-2018                                                                             Date of acceptance: 28-06-2018 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 

We are often faced with fuzzy or uncertain information in almost fields of our life. Therefore, it is 

natural that there were many works dealing with relational database models with uncertain information, 

normally called fuzzy database models. There are several approaches to such fuzzy databases to solve the 

problem of representation and semantic treatment of fuzzy information. They depend of course on the 

viewpoint, upon which one models the fuzzy data.  

In the simplest case, the fuzziness of database model lies in the fact that some of the relations of the 

database are viewed as fuzzy sets on the cross product of their attribute domains, that is each tuple of the 

relations is associated with a membership degree taking values in the interval [0,1]. The handling of the data in 

such a database is rather simple, because the attribute values are still crisp ones, i.e. the attributes of the database 

are not allowed to take fuzzy data. To compare two values of an attribute domain D, a fuzzy relation RES is 

utilized, where RES is a reflexive and symmetric relation defined on the cross product of D, RES: DD [0,1], 

and called resemblance or proximity relation. 

The original approach to fuzzy database is the one in which some attributes allow taking fuzzy sets as 

their values, which represent the meaning of vague terms, i.e. the uncertain information of the available 

knowledge about the elements of the attribute domain. For an attribute A, A(x) denotes the value of the object or 

individual x at the attribute A. In the case A(x) is an uncertain data, A(x) is a fuzzy set defined on the real domain 

of A. To capture the semantics of this kind of data, there are various approaches to utilize the semantics of fuzzy 

sets for defining the similarity between two fuzzy sets. For example, to compare two fuzzy sets A and B one can 

introduce different equality indexes, which indicate their similarity, or different comparability measures 

Com(A,B), which are also fuzzy sets but defined on [0,1] to measure the extent to which the one fuzzy set is 

compatible with the other or to measure the compatibility of the fact that “A is B” [13]. There are also several 

other compatibility measures established based on certain intuitive semantic idea for particular categories of 

fuzzy sets such as the one of triangular and/or trapezoidal fuzzy sets [14]. 

It may be observed that although these approaches achieve many successes in both theory and 

applications, there are still some inconveniences in data manipulation for these databases:  

i) Normally, fuzzy data in such fuzzy databases provided by the database user are linguistic data which 

are considered as the labels of fuzzy sets or possibility distributions. As it can be seen above, there are many 

computational approaches to the representation of the meaning of linguistic information.  

ii) Secondly, in fuzzy databases there are attributes, whose values are crisp as well as imprecise data, 

the data types of these attributes are not unique, e.g. their values may be real numbers or fuzzy sets or possibility 
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distributions. In comparison with the classical database it causes many changes in data manipulation. The 

difficulty lies in the fact that how we can define matching relations such as =, , ≤, ≥, <and > between values of 

completely different types in a fuzzy environment. For example, how we can understand the expression t[A] 

s[A], where t and s are tuples of the database and t[A] and s[A] denote the values of different types of these 

tuples of the attribute A and  is one of the matching relations =, , ≤, ≥, <and >. Therefore, this problem may 

become simpler if we can give another approach in which we can treat all uncertain data as real data in the data 

manipulation. 

Hedge algebras form an algebraic approach to the natural qualitative semantics of linguistic terms [7] 

and establish a quite new methodology to solve effectively approximate reasoning problems [9]. So, it may 

allow us introduce a new approach to fuzzy databases. In the algebraic approach, each term-domain X = 

LDom(A) of the linguistic variable [6], or an attribute A of a database can be considered as an algebra in the 

category of universal algebras: (LDom(A), G, C, H, ≤), where C is a set of constants, G is a set of primary terms 

considered as generators, X is freely generated from G by means of one-argument operations in H, a set of 

linguistic hedges or modifiers in question, and  is a semantics-based ordering relation on X. Intuitively, we can 

observe that term-domains can be ordered based on the natural meaning of their elements and two terms x and y 

satisfy the inequality xy if the meaning of x is less than the one of y.  

In this paper, we will introduce a notion of neighbourhoods of the representative of a term x, called also 

neighbourhoods of the term x. They are subintervals of [0,1] that contain the representative of x considered as 

their topologically internal point and they can be defined based on the fuzziness measure of terms. It is 

interesting that this provides an ability to define fuzzy matching relations, called matching relations of degree k, 

where k is the length of a term, and to translate queries related with linguistic data into traditional ones. The 

paper is organized as follows: In the second section, some results of hedge algebras are introduced. In the 

section 3, a relational model of  databases  with linguistic data is proposed. Some conclusions will be given in 

the end of the paper. 

 

II. FUNDAMENTAL CONCEPTS 

In this section, we will shown that the meaning of linguistic terms can be expressed by utilizing the 

structure of hedge algebras or, in the other words, each terms-domain which can be ordered by the semantics of 

terms becomes a hedge algebra. Since in databases the attribute domains are linearly ordered sets, we shall 

restrict our presentation to linear hedge algebras. 

 

2.1.  Qualitative semantics of linguistic terms 

It has been seen above the meaning of terms of a linguistic variable X can be expressed through an 

ordering relation on its terms-domain. In other words, the meaning of a term is revealed through the algebraic 

structure related to this term. This viewpoint is similar to the observation that the meaning of the truth value 

“totally true” in the classical logics is interpreted not only by 1 itself, but by 1 in the context of 0 defined by the 

order-based structure of a two-element Boolean algebra. Therefore, the meaning of a term in a terms-domain X 

of a linguistic variable X can be represented by its ordering relationships with the remaining ones in this 

domain, i.e. by an algebraic structure of terms-domains. In [6-9], it is shown that each term-domain X can be 

regarded as an abstract algebra AX = (X, G, C, H, ≤), where C = {0, W, 1} is a set of constants, X = H(G) C 

with H(G) being freely generated from the set of generators G by means of one-argument operations in H, a set 

of linguistic hedges or modifiers, and  is a semantics-based ordering relation on X. Such algebras are called 

hedge algebras. In the case that the sets H

, H

+
 and G are linearly ordered, where H


 and H

+
 are, respectively, 

the sets of negative and positive hedges and H = H

H

+
, AX is called a linear hedge algebra. For instance, the 

domain of the linguistic variable TRUTH: T = {0, W, 1, true, false, very true, more true, rather true, very false, 

rather false, less false,...} can be considered as a linear hedge algebra AT = (T, G, C, H, ) with G = {true, 

false}, H
+
 = {very, more}, H


 = {rather, less} and  is a relation induced by the natural meaning of terms in X, 

e.g. we have 1>very true>true, more true>true>rather true>less true, ... >W>less false>rather false>false>very 

false, … >0 … 

 

2.2. Fuzziness measures and semantically quantifying mappings 

Consider a complete linear HA AX = (X, G, C, H, , ,), which is a completion of AX = (Dom(X), G, 

C, H, ), where X = He(G), He = H {, } and , are two artificial hedges the meaning of which is defined, 

respectively, by the supremum (denoted by sup, for short) and infimum (denoted by inf) of the set H(x) in the 

poset (X, ). The word “completion” means that it is necessary to complete certain elements in the original 

hedge algebra AX so that the operations  and will be defined for all xX. Set Lim(X) = X \ H(G), elements of 

which are called limit elements of AX. 
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Definition 2.1[8]. A Comp-HAsAX =  (X, G,C, H, , , )is said to be a linear hedge algebra(Lin-HA, 

for short) if the sets GC = {0, c

, W,  c

+
, 1}, H

+
 = {h1,..., hp}and H

-
 = {h-1, ..., h-q}are linearly ordered with  

h1<...<hpand h-1< ...< h-q,where p, q >1. Note that H = H

H

+
. 

Let Xbe a linguistic variable and AX = (X, G,C, H, , , ) be a ComHA which models a linguistic 

domain Dom(X) of the variable X. Assume that this algebra is free, that is hxx, for every xH(G) and h H. 

Semantically, for each term x, the set H(x) consists of all terms whose meaning originates from a definitive 

essential meaning of the term x. For example, consider two terms x = RatherTrue and y = ApproximatelyTrue. 

The term VeryRatherTrue reflects a certain meaning of RatherTrue but not of AppTrue, while the term 

VeryAppTrue reflects a definitive meaning of AppTrue, but not of RatherTrue. In addition, it can be observed 

that a term x is vague if and only if its meaning is still changed by using hedges. For example, True is vague, but 

Absolutely True is not and hence H(Absolutely True) = {Absolutely True}. Therefore, we may consider the set 

H(x) as an expression of certain essential characteristics of fuzziness of the term x and we may use it to model 

the fuzziness of the linguistic term, qualitatively.  

In connection with measuring the fuzziness of linguistic terms in the algebraic approach, we need study 

the problem of quantification of hedge algebras. Similarly, as the fuzzy defuzzification which assigns a real 

number of the reference domain to each fuzzy set, we introduce a notion of semantically quantifying mappings 

(SQMs) of hedge algebras. Fuzziness measure of terms and hedges are very difficult to define in the framework 

of the fuzzy sets theory. But hedge algebras provide a good intuition and good mathematical basic to define 

these notions in a reasonable way. Moreover, as it can be seen below, there is a close relation between SQMs 

and fuzziness measure of hedge algebras.  

Definition 2.2[8].Given a Lin-HA AX = (X, G,C, H, , , ). A mapping f: X [0,1] is called a semantically 

quantifying mapping (SQM) of AX if it satisfies the following conditions: 

1)f is a one-to-one mapping; 

2)fpreserves the ordering relation on X, i.e.  x < y f(x) <f(y), and f(0) = 0, f(1) = 1; 

3)f is continuous in the sense that for xX,f(x) =inf f(H(x)) and  f(x) = sup f(H(x)).  

Note that x = supremum H(x) and x = infimum H(x), where the supremum and infimum are taken in the 

linearly ordered set X.  

Based on the structure of freeLin-HAs, it is observed that the “size” of H(x) can model the fuzziness degree of 

the term x, since it consists of terms which have a meaning originating from that of x. If x is an exact concept, 

then it is a fixed point and hence H(x) = {x}, a single element – a minimal set among the sets H(x), xX. And, 

if x = hu and y = kv, h, kH, h k,we always have H(hu) H(x) and H(hu) H(ku) = , that is that if x and y 

originate from two terms having essentially different meaning then their fuzziness models can be consider as 

independent events. In addition, the equality H(x) = kHH(kx) indicates that the fuzziness model of x equals the 

union of the fuzziness models of the more specific and “independent” terms originated from x. So, as a 

consequence, for a given SQM f, the diameter of the image f(H(x)) [0,1] can be interpreted as fuzziness 

measure of the term x. Therefore, we can introduce the following definition which can be adopted as an 

axiomatization of the fuzziness measure:  

Definition 2.3 [8]. Given a freeLin-HA AX = (X, G, C, H,,,). An fm: X[0,1] is said to be a fuzziness 

measure (FM, for short) of terms in X if: 

1)fm(c

) + fm(c

+
) = 1 and for u X, )()( ufmhufm

Hh
 

; In this case fm is called complete;  

2) If H(x) = {x}, then fm(x) = 0. Especially, fm(0) = fm(W) = fm(1) = 0; 

3)x, y X, h H, 
( ) ( )

( ) ( )

fm hx fm hy

fm x fm y
 , that is this proportion does not depend on specific elements and, hence, 

it is called the fuzziness measure of the hedge h and denoted by (h).It is easy to show the following 

proposition: 

Proposition 2.1 [8].For fm and (h) defined in Definition. 2.3, the following statements hold: 

1)   fm(hx) = (h)fm(x), xXandfm(x) = 0, for allx Lim(X);  

2)  fm(c

) + fm(c

+
) = 1; 

3) 



0,

)()(
ipiq

i cfmchfm , where c {c

 , c

+
};   

4) ;),()(
0,

Xxxfmxhfm
ipiq

i 


 

5)   }1:)({ iqhi
and   }1:)({ pihi

, where , >0 and  +  = 1.  

 

 

 



Anapproach For Processing Fuzzy Data Based On Hedge Algebras 

                                                                                        www.ijres.org                                                       56 | Page 

2.3. A family of fuzziness intervals and its structure 

The following notion will be useful for studying the structure of a family of fuzziness intervals and for 

defining a specific family of SQMs induced by the fuzziness measure fm. It is interesting that we can define the 

sign of elements of hedge algebras, based on the positiveness and negativeness of primary terms and PN-

property of hedges: 

 

Definition 2.4 (Sign function) Sign:X{1, 0, 1}is a function which is defined recursively as follows, where h, 

h’ H, c {c

, c

+
}: 

1)   Sign(c

)     = 1, Sign(c

+
) = +1,  

2) Sign(h'hx) =  Sign(h'hx) ,  if  h’hx = hx  and otherwise,  

Sign(h'hx) = Sign(hx), if  h’hxhx and h' is negative w.r.t. h (or w.r.t. c, when h = I and x = c); 

Sign(h'hx) = +Sign(hx), if  h’hxhx and h' is positive w.r.t. h (or w.r.t. c, when h = I and x = c). 

3) Sign(x) = 0, for all limit elements x X\ X, where X = H(G). 

Based on the fuzziness measure above, we define a notion of fuzziness intervals of terms that model an aspect of 

quantitative term meaning. For every term x, the fuzziness interval of x is a subinterval of [0,1] of length fm(x), 

denoted by fm(x), which is defined by induction on the length of x as follows:  

i) For terms x of length 1, i.e. x {c
+
, c


}, fm(c


) and fm(c

+
) are defined so that they constitute a partition of 

[0,1] and satisfy the conditions that fm(c

) fm(c

+
), i.e. their order is induced by that between c

+
 and c


, 

|fm(c

)| = fm(c


) and |fm(c

+
)| = fm(c

+
), where |(x)| denotes the length of (x). Here, the notation UV means 

that, for xU, yV, we have xy. 

ii) Suppose that fm(x) has been defined and |fm(x)| = fm(x), for all x of length k. Then, {fm(hix): i[-q^p]} is 

constructed so that it is a partition of fm(x) and satisfies the conditions that |fm(hix)| = fm(hix) and {fm(hix): i  

[-q^p]} is a linearly ordered set, whose order is induced by that of {h-qx, h-q+1x, ..., hpx}, i.e. if, for example,  h-

qx>h-q+1x> ... >hpx, then fm(h-qx) fm(h-q+1x)  ... fm(hpx) (see Figure 2.2).  

Assume from now on that the fuzziness intervals of linguistic terms always contain their right end-point, e.g. by 

this convention we have fm(c

) = [0, fm(c


)] and fm(c

+
) = (fm(c

+
), 1]. 

If l(x) = k, then the fuzziness interval fm(x) of x is said to be of depth k and, if necessary and the index fm is 

understood, we use the notation k(x) to indicate explicitly that this fuzziness interval is of depth k.  

Set Xk = {xX :l(x) = k}. Obviously, X = 1k<Xk.  

Put Ik = {k(x): xXk}, the set of all fuzziness intervals of depth k (or fuzziness k-intervals for short), for a given 

positive integer k, and put I = {(x): xX} = 1k<Ik, the set of all fuzziness intervals of a hedge algebra AX.  

The following proposition describes the structure of the family of the fuzziness intervals which serves as a basis 

for studying the similarity of data in an attribute domain (refer to Figure 2.1). 

 

 

 

 

 

 

 

 

 

Definition 2.5 [7]. Let AX = (X, G, C, H,,, ) be a free complete Lin-HA and fm(c

), fm(c

+
) and (h) be 

fuzziness measures of the primary terms c

, c

+
 and hedge hH, respectively, which satisfy 2) and 5) of 

Proposition 2.1. Then, the mapping  induced by the fuzziness measure fm is defined recursively as follows: 

1)(W) =   = fm(c

), (c


) =  - fm(c


)= fm(c


), (c

+
) =  +fm(c

+
); 

2)
( )

( ) ( ) ( ){ ( ) ( ) ( ) ( ) ( )}
j

j j i j ji Sgn j
h x x Sgn h x h fm x h x h fm x    


   , where  

1
( ) [1 ( ) ( )( )] { , }

2
j j p jh x Sgn h x Sgn h h x        , for all j [-q^ p]; 

3)(c

) = 0, (c


) =  = (c

+
), (c

+
) = 1, and for all j [-q^ p], we have: 

(hjx) = (x) + 






2

)(1
)(

)(
)}()(){(

xjhSign
jsignj

jsigni
ij xfmhxhSgn    and  

(hjx) = (x) + 






2

)(1
)(

)(
)}()(){(

xjhSign
jsignj

jsigni
ij xfmhxhSgn  . 

Figure 2.1 
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It will be seen that there is a close relationship between this SQM and the fuzziness intervals of a hedge algebra 

which is shown in the following theorem:  

Theorem 2.1 [7].Let AX = (X, G, H,,,) be a free complete Lin-HA and  be defined as in Definition 2.5. 

Then,  is an SQM and (H(x)) is dense in the interval [(x),(x)],x X. Moreover,  (x) = 

inf(H(x)),(x) = sup (H(x)) and fm(x) = (x)(x), and hence fm(x) = d((H(x))), whered(A) denotes the 

diameter of A  [0,1]. As a consequence,[H(G)] is dense in [0,1]. 

Example 2.1. Let us consider a linear hedge algebra of AGE, AX = (X, G, C, H,,,), where G = {young, 

old}, H

 = {P, L} and H

+
 = {M, V}, where P, L, M and V stand for Rather, Less, More and Very, respectively. 

Suppose that DA = [0, 120], fm(old) = 0.55, fm(young) = 0.45, (R) = 0.32, (L) = 0.20, (M) = 0.30 and (V) = 

0.18. So,  = 0.52 and  = 0.48. Since, in applications instead of the SQM taking values in [0,1], it should takes 

values in [0, 120], we set A,r(x) = A(x)×120, where the index r means that it is a value of the “real” domain in 

question. So, by Definition 2.5, we have: 

A,r(young)    =  (0.45 – 0.45×0.52)×120 = 0.234×120 = 25.92 

A,r(Ryoung)  =  25.92 + 0.48×0.32× 0.45×120 = 34.2144  

A,r(MRyoung) =  34.2144 + (1)×[1 ]×0.30×0.32× 0.45×120 =  31.51872 

A,r(VRyoung) =  34.2144 + (1)×[0.30+0.18  0.18×]×0.32× 0.45×120 = 27.412992 

A,r(Vyoung)  = 25.92 + (1)[0.30 + 0.18  0.48×0.18]× 0.45×120=  4.6656 

A,r(Vyoung) =  25.92 + (1)×0.30× 0.45×120= 9.72 

A,r(Lyoung)=  25.92 + (+1)×0.32× 0.45×120= 42.2 

 

III. A RELATIONAL MODEL OF DATABASES WITH LINGUISTIC DATA 

As usual, a relational database model is a set DB = {U, R1, R2, …,Rm; Const}, where U = {A1, A2, …, 

An} is the universe of attributes, Ri is a relation scheme, which is a subset of U, Const is a set of constraints on 

data in database. Each Aj will be associated with a set DAj, called the domain of Aj.  

In a relational database with linguistic data, if an attribute Ai is allowed to take linguistic values, it can 

be regarded as a linguistic variable, denoted also by Ai, whose reference set is the real domain DAi of Ai. So, the 

domain of such an attribute Ai consists of two parts, a real domain DAi and a terms-set X =LDom(Ai), a linguistic 

domain of the linguistic variable Ai. Such attributes are called linguistic attributes. Set D(Ai) = DAiLDom(Ai). 

Here, assume that for Ai not being linguistic attribute, LDom(Ai) = . Elements of DAi will be denoted by a, b, c, 

… and elements of LDom(Ai) will be denoted by x, y, z, u, v …  

As usual, a tuple t onU is a mapping t: U → D(A1) … D(An) such that t(Ai)  D(Ai), for 1 ≤ i ≤ n. 

Tuples will be denoted by t, s with indexes, if necessary. By t[Ai] we mean the value of a tuple t at the 

attributeAi. For any subset X of U, t[X] denotes the restriction of the mapping t onX and it is called a tuple on X.  

Consider a relation scheme, i.e. a subset R of U. An instance of R is a set of distinct tuples on R and 

called a relation. Relations of R are denoted by r[R], s[R] ... If R is understood and there will be no confusion, R 

may be omitted in these notations.  Because t may take real data as well as linguistic ones, it is necessary to 

construct a method for handling the data in database based on their semantics. If we interpret linguistic data as 

labels of fuzzy sets then we can manipulate data based on fuzzy sets theory and we have a concept of fuzzy 

databases.  

In this paper, linguistic domain LDom(Ai) is assumed to be a subset of the underlying set of a complete 

linear hedge algebra AXAi= (X, G, H,,,) of the linguistic variable Ai. It raises a question: is there a method to 

manage the semantics of data based on hedge algebras? If the answer is positive, we may consider linguistic 

values in databases as elements of hedge algebras, whose underlying set is a term-set. From this viewpoint, the 

above database model is called a relational database model with linguistic data. 

 

3.1. HA-based semantics of linguistic data and semantics-based topology 

Let us consider a linguistic attribute A and suppose as above that D(A) = LDom(A) DA is a mixed 

domain of A. The question is that how we can define a similarity of data in the mixed domain D(A)?  

In traditional way, each linguistic value is interpreted as the label of a fuzzy set on DA. It is well known 

that under such fuzzy data representation, manipulation of data is much more difficult than in the case of crisp 

data. Especially, it is not easy to define data similarity in a unified way, since its data types are not unique and 

their semantics is completely different.  

We shall solve this question in such a way that we can manipulate the data in databases simply and in a 

unified way. Firstly, to unify the data types, we embed LDom(A) into the underlying set of a Lin-HA AXA = (X, 

G, H,,,) and utilize a quantitative semantic mapping A,r associated with the variable A to transforms 

linguistic data to real data, i.e. A,r : X → DA, where the index r indicates as above that A,r takes values in the 

real domain DA. So, each linguistic datum x of A can be regarded as a label of a real value defined by A,r. Since 

A,r(x) DA, we may establish a method for manipulating the data of real type or linguistic type in a unified way. 
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However, the semantics of A,r(x) is completely different from the usual real data, because the real value A,r(x) 

is only a representative of the term x that depends on the fuzziness parameters. So, we can not handle by simply 

using A,r(x) instead of x in comparison with real values or linguistic values of A, but we should handle it in 

another way, utilizing the fuzziness intervals of x.  

Let a terms-domain X of a linguistic attribute A be given and Xk be the set of all term x of the length k. 

Let us denote by x0k the least element in Xk. Then, A(x0k) = 0 and according to Theorem 2.1 and the definition 

of the fuzziness intervals, we have k(x0k) = [A(x0k),A(x0k)] and k(x) = (A(x),A(x)], for all xXk and x 

x0k with a note, by our convention, that the fuzziness intervals are closed at their right end-point. If we denote 

by k the greatest length of intervals in Ik = {k(x): xXk) and bythe greatest fuzziness measure of hedges in H, 

then by (1), Proposition 2.1 we have k+1 ≤ k ≤ k1. Since < 1, it follows that we can find a fuzziness 

interval of x as small as we desire.  

Let AX be a Lin-HA with H
+
 = {h1,...,hp}and H

-
 = {h-1, ..., h-q} being linearly ordered sets with  h1<...<hpand h-

1< ...< h-q,where p, q >1. In applications, we usually assume p, q ≤ 3. Denote by H1 = {hi, h-j : 1 ≤ i ≤ [p/2] & 1 

≤ j ≤ [q/2]} the set of hedges that generate terms which have a meaning near the meaning of the original x and 

by H2 = {hi, h-j : [p/2]  <i ≤ pand [q/2] <j ≤ q} the set of hedges that generate terms which have meaning far 

from x. This partition of hedges has only a technical value to serve our definition of basic open sets of certain 

depth k.  First of all, we need some notions and notations.  

Let INTk be a set of fuzziness intervals of depth k. Two fuzziness intervals of depth k, k(x) and k(y), is said to 

be connected in INTk if there is a chain of consecutive fuzziness intervals in INTk such that it connects k(x) and 

k(y). In this case k(x) is also said to be connected in INTk to a point ain k(y). The set INTk is said to be 

connected if any two of its intervals are connected and, otherwise, it is said to be disconnected.  

This notion of connectivity defines the so-called connectivity relation on INTk and it is an equivalence relation. 

Set INTk(Hn) = {k(hiy): yXk-1, hiHn} and INTk(Hn, x) = {k(hix): l(x) = k – 1, hiHn}, where n = 1, 2. By the 

definition of H1, it can easily be verified that INTk(H1, x) is connected. Note that the point A(x) is the unique 

common end-point of the intervals k(h1x) and k(h-1x). Hence, every fuzziness interval in INTk(H1, x) is 

connected to A(x), that is they lie around the point A(x). From this observation, for every term xH(G), l(x) = k 

– 1, we put  Ok,H1(x) = {k(y) : l(y) = k, k(y) is connected to A(x) in INTk(H1, x)} = hiH1k(hix). 

For illustration, it can be seen in Figure 2.1 that O2,H1(y) = 2(My) 2(Py) and O3,H1(My) = 

3(MMy)3(PMy), where H1 = {M, R} and y is an abbreviation of “young”. 

In the contrast, INTk(H2, x), where H2 = {L, V}, is disconnected and consists of the fuzziness intervals which can 

be considered as lying far from the point A(x). For example, in Figure 2.1, 3(VMy) and 3(LMy) belonging to 

INT3(H2, My) are disconnected in INT3(H2) and lie far from A(My), but 3(LMy) and 3(VPy) are connected in 

INT3(H2) and lie around the value A(y), since they are connected to A(y) in INT3(H2). Note that l(y) = 1 < 3.  

Now, we are ready to define a system of neighbourhoods of a linguistic term. Remember that for x = hk-1... h1c, 

x|i = hi-1... h1c.  

Definition 3.1.For each term x= hk-1... h1c of length k, where cG, a basic semantic neighbourhoods system of x 

up to a depth l, l ≥ k, under the mapping A, denoted by Neig
l
(x), is the set of the following intervals i(x):  

1)  i(x) = i(x|i) = (A(x|i),A(x|i)], k ≥ i ≥ 1; 

2)  k+1(x) = O(k+1),H1(x), i = k + 1;  

3)  j(x), l ≥ j>k+1, is defined as follows: j(x) = {j(y) : l(y) = j, j(y) is connected to A(x) in INTj(H2)}.  

As an example, from the structure of fuzziness intervals given in Figure 2.1, we have  

  2(y) = O2,H1(y) = 2(My)2(Py) 

3(y) = {3(y) :l(y) = 3, 3(y) is connected to A(y) in INT3(H2, y)} 

           = 3(LMy)3(VPy)  

Neig
3
(y) = {1(y), 2(My)2(Py), 3(LMy)3(VPy)}, 

  Neig
3
(Vy) = {1(y), 2(Vy), 3(MVy)3(PVy)}. 

It is worth emphasizing that A(x) is always an internal point of every neighbourhood in Neig
l
(x).   

Example 3.1.Let us consider a linear hedge algebra of AGE, AX = (X, G, C, H,,,), where G = {young, old}, 

H

 = {P, L} and H

+
 = {M, V}, where R, L, M and V stand for Rather, Little, More and Very, respectively. SetDA 

= [0, 120], fm(old) = 0.55, fm(young) = 0.45, (R) = 0.32, (L) = 0.20, (M) = 0.30 and (V) = 0.18. So,  = 

0.52. Note that H1 = {R, M} and H2 = {L, V}.  

1) Basic semantic neighbourhoods of young: By the definition, the basic semantic neighbourhood system of 

depth 1 of young, Neig
1
(young), consists of a unique interval 1(young) = [A,r(young),A,r(young)] = [0, 

fm(young)×120] = [0, 54.00], where the subscript r indicates, as previously, that the mapping A,r is defined in 

the real domain DA. 

The basic semantic neighbourhoods system of depth 2 of young, Neig
2
(young), consists of the intervals 

1(young) = [0,54.00] and 2,r(young) = 2,H1,r(young) = (A,r(My),A,r(My)]  (A,r(Ry),A(Ry)] = 
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(A,r(My),A,r(Ry)] = (A,r(y) – 120fm(My), A,r(y) + 120fm(Ry)] = (25.92 – 0.30×0.45×120, 25.92 + 

0.32×0.45×120) = (9.72, 43.20], where y stands for young, for short.  

The neighbourhood of depth 3 of young under A,r is the interval 3,r(young) = 3(LMy)3(VPy) = 

(A,r(LMy),A,r(LMy)]  (A,r(VRy),A,r(VRy)] = (A,r(LMy),A,r(Vy)] = (A,r(y)   120fm(LMy), A,r(y) 

+ 120fm(VRy)] = (25.92  0.20× 0.30×0.45×120, 25.92 + 0.18×0.32×0.45×120] = (22.68, 29.0304], since L, 

VH2.   

2) Semantic neighbourhoods of Rather young (Ry):we have A,r(Ry) = 25.92 + 0.48×0.32× 0.45×120 = 34.2144. 

Then, by Definition 3.1, we observe thatNeig
2
(Ry) consists of a unique interval [A,r(Ry),A,r(Ry)] = (25.92, 

25.92 + 0.32×0.45×120] = (25.92, 43.2];  

Neig
3
(Ry) consists of the neighbourhoods in Neig

2
(Ry), 2,r(Ry), and the following ones with a notice that the 

length of Ry is 2: 3,r(Ry) = O3,H1(Ry) = (A,r(Ry) – fm(MRy)×120, A,r(Ry) + fm(RRy)×120] = (34.2144 – 

0.30×0.32×0.45×120, 34.2144 + 0.32×0.32×0.45×120] = (29.0304, 39.744]. 

 

3.2. Manipulation of linguistic data semantics 

Normally, the mathematical foundation for data manipulation is the relational algebra, whose important 

operations such as “select”, “join”, … , are defined based on the evaluation of matching relations =, , ≤, ≥, < 

and > on mixed domains of the linguistic attributes. We shall try to solve this question in such a way that we can 

manage the data in databases in a most advantageous way which utilizes the new data semantics.  

Let t and s be two tuples defined on U. Each linguistic attribute Ai will be equipped with a quantitative semantic 

mapping Ai :LDom(Ai) → DAi. The first question is how can we define matching relations on D(Ai) = 

DAiLDom(Ai), which contains linguistic data as well as crisp data? First off all, we will define the notion of 

“equality” on D(Ai). In a fuzzy environment, there is a degree of equality, called a similarity between data. In the 

algebraic approach, we will introduce a notion of similarity of degree k, where k is the length of terms, based on 

the notion of neighbourhoods of depth k examined above.  

Let X be a set of linguistic terms of an attribute A, which is considered as a subset of H(G) of a Lin-HA. We will 

define a k-partition of the unit interval [0,1], based on the neighbourhoods of depth k of terms in X defined by 

Definition 3.1.  

Let, for each k, a set of k-intervals associated with x, xX, where k indicates that they are constructed 

by utilizing fuzziness intervals of depth k, is defined as follows: 

Let us consider the sets H1, H2 and the sets INTk(Hn) = {k(hiy): yXk-1, hiHn}, n = 1, 2, as mentioned in 

Section 3.1. It is clear that INTk(H1) INTk(H2) =  and INTk(H1) INTk(H2) = Jk, the set of all k-fuzziness 

intervals. The connectivity relation on INTk(Hn) partitions the set INTk(Hn) into the connectivity components. 

Intuitively, each component defines a similarity of degree k between its real values. This suggests us to 

introduce the following 

 

Definition 3.2.Each connectivity component C of INTk(Hn), for n = 1, 2, determines an interval Sk = {k: 

kC}.It is called a k-similarity interval of x, for any xX such thatAi(x) Sk, and denoted by Sk(x). 

This definition is correct, since the k-fuzziness intervals in C are consecutive and, therefore, they constitute a 

subinterval of [0,1]. 

To exemplify this notion, consider the structure of the fuzziness intervals given in Figure 2.1. For k = 3, it can 

be seen for example that {3(LMy), 3(VRy)}, {3(MMy), 3(RMy)}, {3(LVy), 3(VMy)}, {3(VVy)} are 

connectivity components of INT3(H1) and INT3(H2). 

 

Definition 3.3.Let a Lin-HA AX and its fuzziness measure fm be given. Suppose that Ai is the SQM induced by 

the fuzziness measure fm. Then, for any two tuples t and s onU, we shall write t[Ai] =,ks[Ai] and call it an 

equality of degree k, or k-equality, if the following conditions hold:  

1) If t[Ai], s[Ai] DAi  then t[Ai] = s[Ai]; 

2)  If only one of t[Ai], s[Ai] is a linguistic datum, say t[Ai], then s[Ai] Sk(t[Ai]); 

3) If both t[Ai], s[Ai] are linguistic data, then Sk(t[Ai]) = Sk(s[Ai]).  

 

Definition 3.4.Let us assume the same assumptions as in Definition 3.3. Then, 

1)  We shall write t[Ai] ≤,ks[Ai], if either t[Ai] =,ks[Ai] or Sk(t[Ai]) <Sk(s[Ai]); 

2) We shall write t[Ai] <,ks[Ai], if Sk(t[Ai]) <Sk(s[Ai]); 

3) We shall write t[Ai] >,ks[Ai], if Sk(t[Ai]) >Sk(s[Ai]). 

For illustration, let us consider the following example. 
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Table 3.1.An instance r of the relation scheme R 
Name Age Title NumOS NumOP 

Tim 35 PhD Small 8 

Kerry 55 Ass. Professor 59 46 

William 41 Ass. Professor 68 RRlarge 

Johnson 65 Professor Vlarge 40 

Mary 29 Ass. Professor MRlarge 32 

Robert 59 Professor 63 49 

Martin 54 Ass. Professor 55 39 

 

Example 3.2. Let us consider a relation scheme R = {NAME, AGE, TITLE, NumOS, NumOP}, where 

NAME, AGE, TITLE, NumOS and NumOP stand for Name, Age, Academic Title, Number of Scientific Works 

and Number of post graduate students which have defended their Master or Doctoral thesis successfully. This 

relation scheme may be called TEACHER-ABILITY. Assume an instance r of R given in Table 3.1.  

For manipulating the linguistic data in such a database, the database system will calculate the 

quantitative semantics of the linguistic data. Let be given that DAGE = [0, 120], DNumOS = [0, 75] and DNumOP = [0, 

50] and that the fuzziness parameters of SQM assigned to AGE are the same as in the Example3.1, while the 

ones for NumOS and NumOP are the same and given as follows: = fm(c

) = 0.40, Less) = 0.25, (Rather) = 

0.30, (More) = 25 (Very) = 0.20. Then, the system will calculate the pre-established data for the relation 

scheme R. To exemplify, we calculate some of them: 

1) For the attribute AGE, we will calculate some neighbourhoods of young and the quantitative semantic values 

of y, MRy and VRy, which stand for young, More Rather young and Very Rather young, as follows. Firstly, as 

calculated in Example 3.1, we have: 

A,r(young)    = 25.92; A,r(Ryoung) = 34.2144 ; A,r(MRyoung) = 31.51872; A,r(VRyoung) = 27.412992  

and A,r(Vyoung)  = 4.6656. 

Now, we calculate some similarity intervals of 2- and 3-partition of the domain of the attribute AGE: 

2,AGE(y) = AGE(My) AGE(Ry) = (A(My),A(Ry)] = (25.92  0.300.45120, 25.92 + 0.320.45120]= 

(9.72, 43.2]. As computed in Example 3.1, we have3,AGE(y)= 3(LMy)3(VPy) = (22.68, 29.0304]. 

2) Now, we compute some equivalence classes of 2- and 3-partition for the attributes NumOS. Firstly, we 

compute the representatives of l and s, where l and s stand for large and small, respectively: 

W,r(l)=  [+fm(l)]75 =  [0.40 + (0.30 + 0.25)0.60]75= 54.75; 

W,r(Rl)  = W,r(l) + (–1)[(R)fm(l) – (R)fm(l)]75  = 54.75 – 0.450.300.6075= 48.675; 

W,r(MRl) = W,r(Rl) + (+1)[(M)(R)fm(l) – (M)(R)fm(l))]75 = 48.675 + 

0.550.250.300.6075= 50.53125 ; 

W,r(Vl)  = W,r(l) + (+1)[((M) + (V))fm(l) – (V)fm(l))]75 = 54.75 + [0.450.60 – 

0.450.200.60]75 = 70.95. 

By Definition 3.2 of k-partition, we have : 

SW,2,r(Rl)   = SW,2(l) = r(Rl) r(Ml) = (W,r(Rl),W,r(Ml)]= (54.75 – 0.300.6075, 54.75 + 

0.250.6075] = (41.25, 66.00]; 

SW,3,r(Rl) = r(RRl)r(MRl) = (W,r(RRl),W,r(MRl)]= (48.675 – 0.300.300.6075, 48.675 + 

0.250.300.6075]= (44.625, 52.05]; SW,2,r(MRl) = SW,2,r(Rl);  SW,3,r(MRl) = SW,3,r(Rl);   

SW,2,r(Vl) =  2,r(Vl) = (W,r(Vl),W,r(Vl)]  = (54.75 + (+1)0.250.675, 54.75 + (+1)[0.25 + 

0.20]0.6075= (66, 75]; 

SW,3,r(Vl) =  r(RVl) r(MVl) = (W,r(RVl),W,r(MVl)]= (70.95 – 0.300.200.6075, 70.95 + 

0.250.200.6075]= (68.25, 73.20]. 

 

IV. CONCLUSION 

In this paper, a relational model of databases with linguistic data is introduced in which the semantics 

of the linguistic data will be defined and manipulated based on the semantic-order-based structure of term-

domains, called hedge algebras.  

The way the semantics of uncertain data will be represented in databases is very important for handling 

the data in databases. Hedge algebras seem to be a useful tool to represent the qualitative meaning of term which 

can be formulated in term of an ordering relation on term-domains associated with certain attributes of a 

database. It is shown that various intuitive essential properties of the meaning of linguistic terms can be 

expressed in the structure of hedge algebras, while almost of them can not formulated in the framework of the 

fuzzy sets theory. Since in this algebraic approach, the ordering relation of hedge algebras can be regarded as 

being induced by the meaning of vague terms in natural language, the structure of hedge algebras can be 

considered as a direct mathematical model of term-domains, i.e. the underlying sets of hedge algebras can be 

understood to be just the mathematical structure of term-domains. On this research viewpoint, hedge-algebra-
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based semantics of linguistic data may reflect faithfully the natural meaning of terms in natural languages. As a 

consequence, this nature may bring many advantages in representing and handling data semantics in databases 

with linguistic data. 

Taking these advantages, the semantics of linguistic data can be represented by a structure of fuzziness 

intervals of real domains of linguistic attributes of a database and, in data manipulation, linguistic data can be 

represented by their representatives (semantic values) in the respective real domains. Both kinds of data, 

intervals and values, are two components for representing the semantics of the linguistic data. Outward they are 

classical real data, however, different from the classical data they may be changed, because they depend on the 

fuzziness parameters which are subjective and in principle can be changed in the life cycle of the database. In 

spite of this, we have a basis to construct a method for manipulating the real data as well as the linguistic data in 

a unified way. Therefore, it is shown for example that queries related with linguistic data can be converted into 

certain classical ones. This of course is one considerable reason for simplifying the data manipulation tasks in 

management of the linguistic databases in comparison with that of fuzzy databases. The second reason for this is 

that on’ce given the fuzziness parameters, the data set for manipulating the linguistic data in databases can be 

pre-established. This speeds up the data manipulation process in the linguistic databases. 
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